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SHEAR LAG IN BOX BEAMS

METHODS OF ANALYSIS AND EXPERIMENTAL

By PAUL KUHN aud PATRICK T. CHIAFUTCJ

SUMMARY

The bending stremea k the cocera of box beam~ or unZe-
$ange beam8 di~er appreeiablyfrom the 8tre88espredicted
by #lw ordinary bending theory on account of ~heardeforga-
tion of the$anges. Thaproblem of predicting the8a differ-
ence has become known as the shear=lag problem.

~efirst part of the paper desk with meth0d8 of 8hear-
lag ana@is 8udable for prgdical me.. Th4 basic eiknenti
of these mehde be been published in preti paper8,
hi the treatment of the8e”methodspnwented in thi8 paper is
consolidated and improwd in sereral respects. The
methods tie m.@ciently general to cmer any arbitrary 8pan-
wise &ion of (7088 88Cti07Land hadi~ m well as
chordtie variation of stringer area, stringer 8P”ngx and
8heet thickne88. iM@hod8 of analyzing the effech of cut-
outs are also gisen.

The wcmui part of the paper, describe8 strain-gage tests
made by the iVACA to uerify the theoy. Three tests were
mude on axially loaded panele of ,~”able cross8eeti4n, six
were made on beams of m-able cross Rd”on, and three
were made on beame of cankant cross 8ection for extreme
or limiting ca8e8. Three teet8 publistid by other im%i%-
gaior8 are also analyad by the proposed method.

In orderto make theted of thetheoryas seueremptwib[e,
the iVAG!A8pecimenswere &signed to di.ow larger &wx-
lag effect8than may be expected in typical pre8entday
comn!ruction. The agreement wae quite satisfactory men
in artreme ca8es such a8 ww short wide beam8. S&”8-
fadory agreementWM8ai80 found in tests on the limiting
cue of a coser m“thowt sti$emv8; this agreement showe
thut th theory is applicable to & cue of heaoy couer
#Me8 ueed withoat stij$ening or to ciise8 in whiih mmtin-
UOIM8ti~ening in the form of corrugated sheet is used.

% third part of h? paper g&8 numerical’ examples
illustrating the methods of unalyti. An appendix giws
compariwns with other method8, parthularly with the
methodif Ebner and KiWr.

INTRODUCTION

The bending stresses in box beams do not slways
conform very closeIy to the predictions of the engineer-
ing theory of bending. The deviations from the theory

are caused chiefly

t
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by the shear deformations in the
cover of the box that constitutes the flange of the b~;
The probIem of analyzing these deviations from the “”
engineering theory of bending has become known as the
&em-lag probkm, a term that is convmient akhough
not very descriptive.

The most important case of shear-kg action occurs k“ j“
the wing structure. The cross section of the wing usu-
ally vmiea considerably along the span; analytical solu-
tionsbased on the ~tion of constant oross section
are therefore of little praotkal value, and methods of
analysis have had to be deveIoped to cope with the con-
ditions found in aotual structures. The development of
such methods has been continued over a period of several
yeare (references 1 to 3) and it is now possibIe to give
B reasonably wekounded presentation of practicaI
methods of mmlysis.

The paper is divided into three parts. The ilrst part
dismsses the methods of analysis. The second part
describes tests made by the NfACA and shows compari-
3ona between experimented and calculated results for
the NACA tests as well as for tests made elsewhere.
NumericaI exampks to illustrate the methods of analysis
me pr~tgd in the third part.

The method of presentation chosen is intended to “-.
ueet the needa of the practicing stress amdyet. The
~aper contains the information actually needed in stress
WIIysis. Detailed derivations and discussions have
~een omitted, but they may be found in seversl of the
ited references.

I. METHODS OF ANALYSIS

DEFINITIONOF TEE PItOBLEM ANDBASIC
ASSUMPTIONS

Reduced to its simplest form the problem may be
tated M follows: A sheet, stitkmd or u@if7ened, is
aatened to a foundation aIong one edge and loaded
ilong the two edges perpendicular to the foundation by
Distributed or concentrated forces as indicated in ~
@me 1. The sheet may be a structure in itself
tig. 2 (a]) or it maybe the cover of aboxbeam (fig.2 (b)). ‘___
?he problem iedQ find the stresses in the sheet.

—-
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FIGUEE1.

As shown in figure 1, stifTeg.era are theoretically
neoessary along the loaded edges d concentrated forces
P are introduced because the stresses wouId otherwise
beoome infinite. These edge stfienem will be referred
to throughout this paper as” corner flanges” or simply
“flanges.” Other stiffeners parallel to the loaded edges
will be referred to as “longitudinal” or “stringerq”;
them stiffenera may or may not exist in any given case
and may or may not be attaohed to the foundation.

It will be assumed that- the structure is always
symmetrical about a longitudinal plane (y= O). This
assumption materially simplifk the problem without
decreasing the practical usefulness of the theory very
much because most practical structures are at lead
approximately symmetrical. On aocount of the sym-
metry, it will be sufficient to consider one-half the
structure in all derivations and computations.

It will be assumed that infinitely many ribs of infinite
extensional (chordwiae) stiffness are distributed along
the span. An equivalent assumption is frequently
made in theoretical solutions of stress problems. The
assumption is plausible in this we because it is fairly
obvious that the extensional stiilness of the ribs together
with the lateral bending stiflness of the flanges between
the ribs is sufficient to take care of such transveme
stresses as might arise from longitudinal forces and

FmuEE2

strmses. The final proof that the assumption of rigid
ribs is admtilblo must, of course, be furnished by experi-
ments like those. desoribed im the second part of this
paper.

The field of shear-lag analysis is very extemive; it
was therefore considered advisable to confine the dis-
cussion, in general, to beams with flat covers. The
most general method of analysis given in this paper can
be very readdy extended to beams with cambered covers

and this extension is therefore given. An approximate
method for dealing with moderate amoun ta of camber
is given in referenoe 2.

ANALYSIS OF SINGLE-STRINGERSTRUCTURES

Structures Iike those shown in figure 2, having but a
single stringer, are rarely encountered in practice.
Nevertheless, the antdysis of single-stringer structures
will be fully disouased for several reasons, The immedi-
ate reason is that the fundamental relations as well as
alI the methods of analysis carI be easily demonstrated
on this type of structure. A more important reason is
the fact that the most rapid method of analyzing multi-
stringer structures is based on the temporary reduction
of the multistringer . structure to a single-stringer
structure.

SIGNCONVENTIONS

The sign conventions adopted are as follows: Normal
stresses and strains in the stringers and the flanges are

FIOUEE8.4onventIon fwcoordinatemtn.

positive when they are tmsik. Shear strwscs and .
strains in the cover sh&t arc pos;tivc when they arc
caused by positive strains in the flange, Shear st.rmes
in the web are positive when they arc causing pmitivc
strains in the flange.

The cnmpreesion side of the beam is amdyzed in&-
pendently of the tension side. It is thereforo permis-
sible and convenient to retain the sign con vcntion just
giv~ for the analysis of the compression aide, changing
only the definition of stringer streascs to positive wiwn
compressive.

In general, the positive directions of the coordinate
axes will be taken as shown in figure 3. In some cams,
Particularly for analytical solutions, it is more eonvcn-
ent to use the opposite direction for the positive x-
iirection beoause the resulting formulas are simph’r.
:See, for instance, formulas for wiially loaded panels,
‘eferencw 1 and 2.)

FUNDAMENTALEQUATIONSANDANALYTICALSOLUTIONS

For purposes of shear-lag analysis, all structures m
dealized in a manner familiar, for instance, from tho
Iesign of plate girders. Stringers are assumed to bo
concentrated at their centroida; the idealized sheet is
wsumed to carry only shear, but the faot that the actual
Iheet carriea longitudinal stresses in addition ta the
hear is taken into amount by adding the welt-known
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effective width of the sheet to the stringers. The
participation of the shear web in the bending action is
expressed by adding % htw to AF, which makes the
section moduhs of the idealized section equaI to that of
the actual section. Figure 4 shows the idealized cross
sections of a single-stringer panel and of a single-sh-inger
beam; the standard basic symboIs used in this paper are
indicated in this @we. A complete list of symbols is
given in appendix A.

F- 5 shows an idealized single-stringer beam of
constant cross section subjected to a tramwerw load at
the tip. Inspection of the free-body diagrams in figure
~(b) shows that there are two equations of static
equilibrium,

dFL=dsc (lb)

where SW is the shear force in the web, in this case equal
h P; and diilc= rtdz, where r denotes the shear stress in
the cover sheet.

Under the assumption of Mnite transverse stineas,
the relative kmgitudind displacement (&-@ of two
corresponding points on the flange and on the longitudL

b

Jxl
bt

+,
t------<; ●------JT

A= AL} A= A ~’
h I

Fmum 4.-ConrentI0n fa symbols on crosssktom.

nsl divided by the width b defines the shear strain y and
therefore the shear stress r (fig. 5 (c)). Because the
displacements u are given by the expression

differentiation givea tbc basic cktstic relation

dr=–&,-uJh

where G is the effective shear modulus, which takes into
account the effects of buckling when necwsq.
Equations (la), (lb), and (lc) can be combined to form
a diifercntiaI equation, and this equation can be salved
for simple cases. A number of solutions are given in
references 1 and 2; similar solutions have been given by
other authors. These analytical solutions me of some
value in making comparative stuck and in studying
various aspects of the shear-lag problem. For practi-
caI stress analysis, however, numerical methods capable
of deaIing with arbitnuy variations of cross section and
loading are required. Two such methods will be
described: The soMon by means of a recurrence

formula and the solution by successive slwar-fault
reduction.

ANALYSISOFSINGLE-STRINGERSTEUCL’UBESBY THE
RECUBEENCEFOBMUIA

Principle and scope of method.—The principle of
amdyzing a beam of variable cross section is as follows:
The beam ia divided ink a convenimt immber of bays
in such .a way that the crose section and the running
ahear in the web SF/h maybe assumed to be constant
within etih bay. The shear deformation in the cover
sheet of each bay is computed in terms of the unknown
forc~ acting between bays. A?plieation of the princi- ..

ple of consistent deformations then gives a set of
equations, shndar in form to thre+moment equations,
for the unknown forces.

FL+ dFz

1----- -r
F: ‘L

8“

, r ?2,
% I i“ u;
x

b

(c)

-, ---

FIQom 5.-Fre4Jod9 dlnwamsd beam.

Theoretically, the metJmd permits Wcinginto accouqt
any variation of cross section and loading slong the
span. The limitations are similar to those encountered
~ other problems of stress distribution in cases of
variable cross section and loading.

Eeeurrence formula for shear lag.—h stated in the
.-

preceding section, the beam ia divided into a number - ____
of bays; the cross section and the web shear Sw/h me
assumed ta be constant within each bay. The lengths .
of the bays need not be equal nor need they be smaH,
as is often required in simiir methods. In the limit,
a srngle bay may span the entire Lmgth of the beam.
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The system of numbering the stations and the bays
between stations is shown in iigure 6.

Each individual bay can now be treated aa a free
body subjeeted to certain forcw. (fig. 7). These forces
can be split into two groups (fig. 8): One group consists
of the foreea calculated by the ordinary bending theoti,
which assumes no shear deformation; the other group
represent% the differences between the actual forces and

1 -----
FIOURE 6.—Oonventionfornumberingbays and stationsof a _

the forces of the finh group or, in other words, the
changes in forces caused by the shear deformation of
the cover sheet.

The first group of forces will be d=ignated P-forces
to indicate that they ar’e calculated by the theory that
assumes plane sections to remain plane. hlividua~
forces and stresses belonging to tbie group will be de-
noted by a superscript 1% The calculation of these
forms and stresses is fa@liar, to every engineer and
consequently need not be discussed in detail,

The seeond group of forces willbe designated X-forces.
Because the P-forces on anyone bay are in static equilib
rium, the X-forces at any one station must be a. self-

&

II

n L.
n-l

FIG(XX7,–Fn?E40dY dfasraznsof tw%

equilibrated group longitudinally; that is, at my given
station the force XF acting on the flange must be equal
and opposite to the force XL acting on the longitudinal.
This conclusion was anticipated in figure 8 by writing
X without the subscripts F and L.

The shear deformation of the cover, sheet can now be
calculated in terms of the known P-forces and the
unknown X-fore-; the details of this calculation are

given in reference 3. Equating the deformations at
the adjoining enda of successive bays yields the
recurrence formula

where
K

“= Gt tanh KL -(3a)

(3b)

(3C)

where K is a shear-lag parfimetw appearing in all

&

(a) P.lorces.
(b) X.fwm,

and ytical solutions for sing] e-stringw structures
(references 1 and 2) and is defined by

‘=%+++) ● ‘4)
In equations (3a] to (3c), each individual quuntity
Bhould be understood to have a subscript n, indicating
the” average vilue for the bay in question. Note
should be taken that this statement applies to L, which
is to be taken as the length of the individual hay in
question, not as the length of the entire beam.

Strictly speddng, all coefficients ~ appearing in this
paper should have a superscript P. These supcracripts
have been omitted because they are not needed in L11O
~ctual use of the equations; they are needed only in
ho derivation of tho equations (reference 3).
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Written in more explicit form, the equations are

.Y&- xl(pl +p2)+x2@=–’n+-72

.Y@-x*(p2+p*) +X&= -72+73

. . . . . f

I(5)
.Lq.-x.(p.+p.+l)+X.+1%+1=—Ih+%l+l

. . . . .
.sr-@r-x,(&+pr+J = “Yr+7rt1 I

Itt wiU be noted that the externrdly applied load appears
only in the coefficients 7; for my given beam, then,
the left-hand side of we equations remains unchanged
if changes occur in the loading.

*
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practice when a wing is joined to mrry-through mem-
bers passing through the fuseIage. Case 3 has been
used in practid design tu; facilitate the ~embly of
the wing to the fusekge by reducing the number of “.” “““
bolts to a minimum.

The foundation may be considered es bay r+ 1.
In case 1 there is no shear deformation of bay r+l,
an/i p+l m well as T*I equak zero. In case 2, Y+l
equals zero, because no shear is carried in bay r+l;
the deformation of the bay dep&ds only on the axial
stiflnesses of the flange and the longitudinal passing
through the fuselage, and

(7)

Fmcmx9.—BoundsrycondMom at tIP.

Boundary conditions.-Before the system of equa-
tions (5) can be solved, the boundary conditions at the
tip and at the root must be d&ned. At the tip, the
folIowing cases may arise:

(1) Only a transverse force ia appbd (fig. 9 (a)).
In this case, XO=O.

(2) A longitudinal force P may be introduced
. (fig. 9 (b)). In this case

(6)

When the longitudinal force P is the ordy..foroe applied
to the beam, the idealized shear web is inactive, and
the probkm is that of an axially loaded panel.

At the root, the following cases may ark

1. The fbge and the longituclimd are connected
to a rigid foundation.

2. T~e flange and. the lcmgitwdimd are connected
to a foundation that deforms under load.

3. The flange is conneoted to the foundation; the
longitudinal is not connected.

This system of classifying the possible cases is based
011 the convention of defining the foundation as the
station where the vertical shear is taken out.

Case 1 at the root arises in practice when a wing is
continuous from tip to tip. The plane of _etry is
equivalent b a rigid foundation. Case “2 arises in

where L is the distance from the wing root to the p~ane
of symmetry of the airplane.

In case 3 the last equation of the system cannot be
used, and X, is found by &pection to be —

x .M A.
‘=hw AT (8) ,

Calculation of stresses from X-forces .—After the
system of equations (5) has been solved, the longi-
tudinal strews are found by superposing on the
stresses calculated by the ordina~ bending forrmda
the stresses calculated from the X-forces

where 8 is the stress calculated by t~e ordinary bend-
ing formula. In the case under discussion, where the
beam has no camber,

P— P M
UF — cs~ =—

ld.
(10)

The running shear @ the cover- sheet of bay n close
to the inboard end of the bay, that is, close to station n,
is given by the formula .
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Netir the outboard end of bay n; that-is, near station
n— 1, the running shear in the cover sheet is

For some applications it is desired to compute the
average running shear in a bay. If the bay is not too
long, this average shear may be obtained by averaging
the shears at the. two ~nds of the bay computed by the
formulas just given, The result is

(d.);,=
SAL

()~, ~–;wrxn.l) (p,+%) (llC)

An alternative way to computa the average shear is
to use the basic static relation (lb)

(T~~)n=&.-~’R_* (l Id)

Formula (lld) gives the true average; formula (1 lc) is
approximate.

Influence of taper in depth and width,-When a
beam ,is tapered in depth, it is necessary to remember
that part of the vertical shear is carried by the inclined

flanges and longitudinal, so that

where i is the inclination of the tension flanga with
respect to the compression flange.

Wheri a beam is tapered in width, neither the ordi-
nary bending theory nor the shear-lag theory is strictly
applicable. The error caused by applying the ordinary
bending theory, however, is small for normal angles of
taper; to a similar degree of approximation, the follow-
ing approximate method of shear-lag calculation may
be used.

,Assume that the taper is removed by making the
widths b at aIl stations equal to the width b, at the root.
At the same tinm, increase the sheet thicknesses in the
ratio bJb. The result will be an untapmcd beam that
has tho same shear stiffnem Gt/b at any station as tho
actual beam. This method of probedure assumes that
transverse components of longitudimd forces can be
neglected; this assumption is in keeping with the
assumption of rigid ribs.

It should be noted that tho parameter K (equation
(4)) in any bay of the fictitious untapered beam is equal
to the corresponding parameter K of the actual tapered
beam, but the coefbients p, q, and -y of the fictitious
beam differ from those of the actual beam by the ratio
b/b,. It isstated in reference 3 that the effect of taper
in plan form might be more pronounced than is indi~ated
by the method just given. Re-examination of the test
dda in the light of the additional test experience gained
since reference 3 was written tends to show that the
method given here is sufficiently accurate for the taper
ratios likely to be e.nccmntcred on wings.

ANALYSISOFSINGLE4$TRINGEESTRUCTURESBY flUCCE991VE
SHEABFAIJLTREDUCTION

Principle and soope of method,—The principle of
the method of successive shear-fault reduction is as
follows:

An cstimato is made of the stresses u~ in tho fhmgc;
the stresses u. in tho longitudinal are calculated by
statim. By the application of the basic equation (lc)
and a process of numerical integration, the spanwiso
distribution of shear force in the sheet can then be cal-
culated. On the other hand, app~ication of tho basio
equation (lb) also gives a spanwisc curve of shear force
in the sheet. The two curvw will not agrco except by
accident because the estimated values of ar and CLwill
not fuMll the elastic relations and the boundary ccmdi-
tions except by accident. The difference between thu
two curves will be referred to as the curvo of “shear
faulte.”

The exkt-ence of shear faults in the calculation proves
that the ~ssumed stresses u~ do not constit uto the true
solution of the stress problem for the specified external
loads. The assumed stresses o cxmetitutc, however,
the true solution for a closely reIated problem, namely,
the structure subjected to the’ spccificd external loads
and, in addition, ~ubjected to a system of external
loads equal to the shear faults. Obviously, then, the
desired solution can be obtained from the assumed solu-
tion by deducting the effects of the shear faults. This
deduction is effected by superposing tho effccta of cor-
rective external shear forces that are assumed to be
applied in opposite direction ta the shear faults

If the magnitudes of the corrections were made equal
tc -the faults, the basic static equation (lb) WOUMbo.
fulfilled at each station but the basic elastic relation
(lc) would be upset. As a compromise bctwccn t.hcsc
conflicting requirements, the correction is mado equal
to one-half the fault.

Because transverse forces are absorbed by the rib
system and are not considered, tho introduction of an
external shear is equivahmt to the introduction of a pair
of equa~ and opposite forces. By St. Vcnant’s princi-
ple, the influenceof such a combination of forces is fdt
over only a limited distance. In order to simplify the
cmmputa’tion, it will be assumed that the influence of
each cmrectivo force decreases to zero at the next sta-
tion. Errore introduced by this simplification will bc
small and will eventually bc eliminated by repvating
the process of correction.

Application of the corrective forces to the iuitially
assumed values of ar and ULyields a now set of values
for a, and UL,and the entire process is repeated. It will
be found that the corrective forctwarc becoming smalIcr
with each repetition of the process, so that the solution
will be obtained by a sufficient number of repetitions.
In theory, the computation is finished whcq the correc- -_
tions to. u= and ULare reduced to one unit of the last
siWifi~~ t figure of up or OL. In pmcticc, the compu-
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tdion will often be finished sooner at the discretion of
the amdyst.

For single-stringer structures, the method of succes-
sive shear-f ault reduction is unlikely to be favored over
the recurrence formula because the time required for a
solution depends very much on the ability of the anaIyst
to make a good initial estimate of r~ and r~. The time
required for a solution by means of the recurrence for-
mula, on the other hand, is almost independent of the
skill and the experience of the analyst becayse the only
item left to his choiu ia the number of bays. The
method of shear-fault reduction for singk-stringer
structures, however, is the direct basis of the most
general method for analyzing multhkringer structures,
and this fact justifies the description of the method.

Method of sucu@ve shear-fault reduction.-h
order to apply the method of shear-fault reduction, the
bemn is divided into a convenient number of bays.
Because the computation involves numerical integra-
tion and differentiation, the lengths AZ of these bays
must be chosen fairly small so that no appreciable error
is made by assuming the stresses to vary linearly in
each bay. Five bays may be considered as the mini-
mum. In order to lwduoe the time required for com-
putation and the pomiiility of errors, the bays should
be made of equal Iengths whenever feasible.

The computation is started by tabulating for each
station the given magnitudes of AF, AZ, t, Q, and M/h
(or P) if they vary along the span. If the beam tapera
in width, a fictitious beam of constant width is used, as
previously discussed.

The magnitudes just enumerated should be separately
tabulated because they fl remain constant; whereas,
the main part of the caIcuIat.ion is repeated a number
of times. The details of the procedure are learned most
easily by following cohmm for column the numerical
wcample given in part III, table 10.

Column 1 in table 10 gives assumed values for ~JF.
In assuming these stress, values, the analyst must be
guided by previous experience. It is possible to use
entirely arbitrary values but, if the assumed valuea
differ too much from the true ones, a &e number of
cycles of the computation will be required. The
simpkt procedure for. general use is to multip~y the
stresses obtained from the ordinary bending theory by
a factor slightly larger than unity. IWt.h some ex-
perience, this factor cm be estimated reasonably well
from a Imowkdge of the average of the shear-lag pa-
nuneter KL and the loading condition.

Cohnnn 2 giv~ the forces F~=uFAr.

Column 3 giva the forces FL=~–F~ in the case bf

a besm or FL=P—F~ in the case-of an” atially loaded
panel.

Column 4 gives the stress& -tiL=F~A..
Colurcn 5 gives the differences between columns 1 and

4 (~~—~L).
rrEmoo-46-z

Column 6 givee the incraents of shear stress
obtained from the bssic rektion (lc),

--

Ar= -$&- u.) (ss-1)

It will be noted that the valu= of Ar in column 6 are
positive. This sign arises from the fact that the integra-
tion of the ehear%ress increments proceeds from the
root to the tip so that the increments AZ are negative.

—

Cohnnn 7 giv= the shear stresses r in each bay.
These stresses are obtained by adding up the increments
Ar given in column 6, starting at the root where r=O.
It”ahould be noted that tie valuw of AT represent the
increments of shear stres9 for intervals of length Ax
along the span; the distmce between the root and the
middle of bay r is, however, onIy half an interred Ax, so
that me value of r, ,ii the root bay is r= JfAr. From”
here on, the MI value of Ar is added each time, unless
the vaIue of r at the tip is ta be caIc@itad when a one-
haIf step would be used again. (The value of rat the .,.
tip is needed for the cfdcrdation of the margin of safety
but it is not needed for the calculations indicated in
table 10. Consequently, this vake is calculated only
after the Iast cycle has been completed.)

F L F L

—

FIGCEE10.-Shear fault and shear-faultomectbo.

Column 8 gives the increments of ahear force

A&= Ttti ‘ (ss-2)
Cchmn 9 givm the increments ~Lj obkimd @ sub- . .

tracting the vtdue of F“ at the outboard end of the bay
from the value of FLat the inboard end of the bay.

.-

According ta the basic relation (lc), AFL ehouhi ..— —
equaI ASc~ in each bay. The differmces in each bay
constitute the shear faults .

SF= ASCB-AFL (ss-3)

and the shear faults SF are given in cxhrnn 10.
Consider now figure 10 (a), which ihows one bay with “ “-~

a positive shear fault SF and the corresponding shear-
fault correction SFC; SFC is in the form of external
forces distributed uniformly along the bay.

The kngth of a bay is small compared with the length
of the structure; it may therefore be assumed that the
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properties of the structure just outboard and just in-
board of the bay considered are the same. Under this
assumption, on~half of the shear-fault correction SFC
will be absorbed by the structure outboard of the bay;
the other half will be absorbed by the structure inboard
of the bay. k previously stated, the tutal shear-fault
corrective force will be taken as one-half the shear fault.

Total SFC=--@F (ss-4)

Therefore the corrective force at tho outboard end of
the bay will be

and the corrective force at the inboard end of the bay
will be

SFC,=~SFC= –@’ (SS-5b)

The corrective stresses AaF and AULare found by clivid-
ing the corrective forces SFCO and SFCi by the areas
A= or AL and are shown in figure 10 (b). The signs of
the corrective stress AUF are the signs giwm in formulas
(SS-5a) and (SS-5b), while the signs of the corrcotivc
stresses AuL are opposite to those given in forndm
(S&5a) and (SS-5b) (fig. 10 (b)).

At the tip station there is no outboard structure to
dcwelop any reeistanco to the shear-fault correction
force. Consequently, for the tip bay ‘

ISFC.=0 [SS-5C)

SFC,=SFC=~SF @S-5d]

In the numerical example (table 10) it will bo seen
that column 11 lists the values of SFCOand column 12
lists the values of LSFCi. At aach station there is one
value of SFC~ and one value of SFCi. The sum of the
two vahm is the final value of the ehear-fault correc-
tive force and is tabulated in column 13

Column 14 gives %=SFC/AF, and column 15 gives
AGL= –SFC/AL. .

The addition of the corrections Aa, to the initially
assumed values of ~F and of the corrections Au~ to the

. initial values of ~Lgives a new sot of valuea for a~ and uL.
The entire procew is then repeated as indicated in
table 11 but the column giving FFis no longor n ceded,

The entire calculation as shown in table 11 “is re-
peated again and again until succcwive sets of values
of ffFand ULare judged to agree with sufficient accuracy.
The limit of possible accuracy is reached when the
values of AuF or Auz become cqual to unity in the last
signific~t &~e of UFor UL.

In order to avoid carrying along errors, FL sho~d be
ill

obtained from the static equation FL=._-FF every
h

second or third cycle instead of from AuL.
The sum of the shear fauIts may be used as an indica-

tion that correct sign conventions have been used; the
sum of the faults in any given cycle must be smaller

than the sum of the faults in the preceding CYCIC.This
.witlerion is not sufficiently sensitive to prove the absence
of any numerical error, hut it is sometimes n welcome
help when starting calculations.

A complication arises vvhcn the longitudinal is not
connected at the root. In this case, the stress aLis Cqllal
to zero at the root but the shear stress r is not equal to
zero. It is therefore impossible to proccctl directly
with tho summation of the increments Ar. ln order to
ovmmme this difficulty, a tritd valu~ To for r at *=O
is assumed, and the summation proceeds from this t rinl
value. From statics, iL is evident. thnt

The trial wduc ~0 must. tlwreforv lw m~ntivc, in ordrr
that the summation of the inmmwnts ASCK dm~ t hc
retire span may l.w equal to zero. Ou III(? first trilil,
Lhis condition will not be met I?xcept by arcidcnt, and
the trial value for Tomust be adjusted until thr giveu
condition is met. Spetiking graphically, the process
consists in findil}g the rum Mwecn n curve (th 7t-
curve) and. fin arbitrary horizontal litm nnd thvn
shifting the horizontal line until the arm Ix’comes zero.
After the first cyclr has km comphlwl, the vu] uv r,,
obtained can lx used as u trial vcdtw for tlw second ryclrl
and it will ho so C1OSCLhilt t ho necessary mljust mont will
be small.

When the longitudinal is discontinuous at some poil~l
other than the root, tlw summation of tlw iucrrmcnts Ar
may be perfornml in the usual numncr for the region
between the root rtnd the inboard end. of the brrak.
The region from the outboard end of the break to thv
tip is treated in a manner analogous to that just dis-
cussec- for a longitudinal discontinuous at the root..

Tn a cambered bmrn, the bnsic equntion (1(I) musl h
modified to read

dr= –-~~ [(~,–rL) – (UFP–a,T)]dr (lC’)

as shown in refmmcc 2. In this equation, a~r is the
stress tic flange calculated by th(’ usunl Me/1 formuht,
rtnd 0# is the stress in the longitudinal cnIcuInted by thr
Me/1 formula. ln the case of a tlut cover, & equnls
#and they cancel, reducing equation (lr’) to equation
(lc). When a beam is analyzed by tht shunr-fnult-
reduction method, formula (.%%1) must I.Jcmoditlwl to
conform with formula (lc’). An tt(l(litiontd column will
therefore be requkd nfter column 5 in ltlble 10.

ANALYSISOF MULTISTRINGERSTRUCTURES

Two methods will be given for thr unu]ysis of nlulti-
stringer structures. Tlw first nwthwi consists in red ur-
irtg the problem to thut of a fictitious singlwstringcr
structure that can be analyzed by thr rwnwrmm.
formula. The final step of trrmsforring bnrk to tlw
actual multistringer structure can bc mwk only umlw
the assumption that the chordwise ~listribution of
material+ tringem and sk% -ia uniform and thn t thr
moduli E and fl are constant almg the chonl. Sm)Ill
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variations from uniformity can be disregarded but,
when large variations exist, it is desirable to have a
more general method available. For such cases, a
method of successive shear-fault reduction is descrhd
that is an extension of the method of successive shear-
fault reduction described for single-stringer structures.
This method permits taking into account arbitrary
chordwise variations of stringer size, stiinger spacing,
sheet thiclm=, and ehstic moduli.

SUBSTITUTESINGLE-STBINGEEMETHOD

Principle of method.~The transverse bending loads
acting on a box beam me taken up first by the shear
webs. The shear stresaee m the web =e partly oon-
verted into normal stmasea at the fhmge; the rest of
the stresses become shear in the cover sheet, which is
gradually converted into normal stresses in the longi-
tudinal as the longitudinal phme of symmetry is
approached. It maybe said, therefore, that the most
important physical action centers mound the flange
because the conversion of shear stress inti bending
stress begins here.

This consideration leads ta a very cormenient method
of anaIyzing a multidringer structure by substituting
temporarily a fictitious single+hinger structure. This
fictitious structure retains without change those parts
of the actual structure in wbkh the primary and the
most impcrtrmt action tak place, namely, the shear
web, the corner flange, and the sheet adjacent to it.
The longitudimds, however, are combined into a single
fictitious stringer, the “substitute singIe stringer,”
located at the centroid of the internal forces in the
stringers. The analysis of the resulting singbtiger
structure can be performed by the methods previously
described and gives the actuel stress in the flange
(equation (9a)) as well as the actual shear st~s in the
cover sheet next to the flange (equations (11)). For
the stress in the longitudinal, ody an avenge value “is
obtained by the anaIysia of the fictitious single-stringer
structure. The stresses in the individual longitudinal
of the actuaI structure are calculated at any given sta-
tion along the span by assuming that the average
stress just calculated is distributed chordwise according
to the hyperbolic-cosine law found in such analytical
solutions as have been published.

The vaklity of the substitution method outlined
can be made plausible in a genergd -way by reference to
St. Vemmt’s principle. A much more ccnvincirg proof,
however, w-ill be given by the comparisons between
experimental and calculated results in the second part
of this paper.

Determination of the substitute single-stringer struc-
ture (first approximation) .-A typical cross section of a
muRistringer structure is shown in @n-e 11 (a). Thii
cross section is idealized as indicated in ftgure 11 (b).
It should be noted that the effective width of skin
adjacent to the flange is considered as a longitudimd
distinct from the flange. The adoption of this rule

makes it fetible to cover all pcssible cases with a single
rule bemuse in a IimMng c~e such as shown m figure .-
1, for instanc~, obviously the entire sheet should be .-
ccmidered as constituting the longitudinaIs. Inciden- .. ..
mlIy, this ruIe tends to reduce the error due k the finite-
rmmber of stringem that wiU be discussed.
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The width d of the idealized sheet between longitu-
&naIs depends on the spacing bl betwetm rivet rows and
on the type of the stiReners. Open-section stiffeners
(fig.. I.Z(a)] do not ccmbjbute to the shear stiffness of
the cover; therefore, d=bl. C1osed:section stiffeners “
(&. 12 (b)) contribute to the shear stiflmss of the cover.
If this contribution is taken into account, the idealized ~
width for shear deformation is d= 61+ hti, in wtich

b.

“Q)

where t$t is the thickness of the stiffener and p is the
perimeter, or developed width, of the stiffener between
rivet rows.

--+--
(4 % (b) ,
~GCEE lZ-6@nd&_d symbolsforwfdth OfP8@9.

The idealized multistnnger struc~ure (fig. 11@)) is
now converted into a single#ringer structure by com-
bining alI idealized longitudirds inta a single longi-
tudinal located at the force centroid of the Iongitudimds.
Because the acturd stresses are not known at this stage,
the stresses computed by the ordinary bending theory
are used ta obtain a first approximation. For the flat
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covers under consideration, the force centroid will then
be the centroid of the cross-sectional areas of the
stringem, the lMc/1 stress being the same in all stringem.
The distance of this cedroid from the flange is the
width b8 of the substitute structure (fig. ] 1(c)). The
substitute structure can be analyzed by the recurrence
formu.Ia or by any other method if desired. If a second
approximation is to be made, the calculations made for
the first approximation can be confined to finding the
stresses a= in the ffange and ULin the ]ongitudirial of
th~ single-stringer structure.

In order h facilitate the determination of 17J, ftguro
13 has been prepared, With the help of this figure;
1% can be determined by inspection after computing
the ratio u~fu~. The stress at the ccntcr line is then
computed by the formula

UcL= (#cosh Yb (16) ,

In order h compute the stress in any stringer at a given
distance y from the contcr line, it is only necessary to
compute Yy= (1%)x (y/b) and to apply formula (14),

Formi,das (14) to (16) apply only when O< UL/a,< 1.
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Chordwise distribution of stresses,-The analysis of
Lhe substitute single-stringer structure furnishes the
flange stress c~ and the chordwise aver~e-of the stressw
in the longitudinaIs for aH stations along the span, The
actual chordwise distribution of the stresses may be
obtained in the following rrmnner, as ~laiiwd in
reference 1.

For the limiting case of i.nfinitely many stringws,
some anrdytical solutions have been obtained in th
form of solutions for the continuous covor shwt.
These solutions show that the chordwiae distrihutiol]
of the stringer stresses at shy given station follows u
hyperboIic<osino htw. The stress ttt u distanw y
from the center line may therefore be written us

u= @t?OSh ]’~ ‘ (14)

where Y is an auxilial~ parameter tmd uc~ is the vtdue
of a at y=O. In this equation, both the “stress uc~ in
the longitudinal at tho center line and the auxiIiary
parameter Y are unknown. Two conditions are avail-
able to de@mine t.bew unknowns: (1) Tho average of
the stresses u between y=O and y=b must. be equal to
tho stress uL of the substitute single stringer, and ~2)
at the ffange y= b, the stress c must equal the stress
u~. The resuIt is R t.ranaccndental equation for 1%,

tanh Yb=g.. _
n q? ‘“””””’-”- ‘ “(15)

@ cbardwl.w dlw!hut[m o! s@sm

In regions critimd for chsign work, this condition is
probably always fulfilled. For certuin purposes such
m che@ing the theory against expcrimentul results,
however, it mtiy be desired to calcuIatc the chordwise
stress distribution at stations who the ratio uJur faIIs
outside of this range, It was proposed in refwxmcc I
to replace formulas (14) to (16) for such wwcs by

.-::—

2–-75--- cr.

2– Cosh K$-F”
( lhl) . ..--. . .

~~L= tTF/(2”—cosh yb) (1h)

Formula (15a) was uawl instead of fmmula (15) tu
extend tlte range of the Y&curve in @urc 13. It will
be noted in figure 13 that the Y&curve for v(~ry smtill
negative values of UJUF does not become infinite as
would be expected by analogy with snmll positivv
values. This peculiarity is causw] by tbr ctpproximntr
nuturo of equation (14a) and is of no prtwtiwd im-
portance,

Correction of ohordwise stress distribution for ffnite
number of stringers.-The method of computing string-
er strcsam by using formula (14) is based on the assump-
tion that the stringers are infinitely closely spaced, 1f
the spacing of the stiffenms is finite, tho total intmmd

.
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force fl bc found by a summation insteaff of an inte-
gration, and the interred form wiH differ somewhat
from the external force. The magnitude of the error
depends on the number of stringers and on the curva-
ture of the chordwise stress plot, which is characterized
I]y the ratio UJU, or by the paramet& Yb.
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FIWJES14.—Enw h tatd formcau3edby U ~af6trfmw’8. n, numberd
strfngemsexeept sMngw eontfgnou.sto ffsnge.

Thu sign of the error depends on the location of the
first stringer near the flange. Under the ruks given
for idedizing the muItistringer crms section, the first
fubizc stringer is locat.cd at y=b (1—l/n), where n
is the number of stringers (arrangement A, fig. 14).
For this cam the summation of the stringer forces wiH
yield a smaller force than is nemeary to bakmce the

.

external load. lf a fdkize stringer were located at ___
the edge y=b (arrangement B, fig. 14), the summatio.q ., .. ___
of the stringer forces would yield too large a value.
As long as Yb is leM thnn about 1.5, the errors for these ;-.. ti
two cases arc numwicalIy cqmd and me shown in
figure 14.

The rule that the eff&ive. width of skin adjacent to
the flange should be considered m a stringer (fig. 11 (b))
helps to reduce the error by bringing the actual cm-e
between the two extreme arrmgements A aud B of
6gure 14. In practice, the ratio of the actual force ta . . . .
the summation of the calculated stringer forces may -.

I be mmlid as’ a correction factor to the calculated
strin&r stresses as illustrated by the numerical emmple
in part III. This method of correction was used in
the amdysis of all NACA tests deem?ibed in part II
with very satisfactory results, even in some quite
extreme cases; it was also used with very satisfactory
redts in making comparisons with the Ebner-Ki$lla
method. (See appendix B.) If the results obtained
by thii method should be considered as too inaccurate,
the method of succesiv,e shear-fault reduction may be
rwortd to for improving the accuracy of the results.

Successive approximations for substitute width.-By
definition, the substitute width is the distance from the
flange to th~ force centroid of the stringers. For in-
finitely many stringers, the centroid can be found by
integration (reference 2), and its location is shown
graphically in figure 15. The substitute width is’-
given by the expression

..—

.

--. ..—

.()b.= 1 –~ 6, (17)

In any given case, the faCtOr, 1– (!lL~~)~ ~~e! <mm .... I

figure15, and b is the effective width for shear deforms- - ,
tion as deflncd by @ure 11 (b).
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In order to use figure 15 it is necessary to know the
parameter Yb; for this reason it is necessary to make
successive approximations. In the first approximation
it is assumed that there is no shear lag; in this case
I%= O and 1– (y~/b) = 0.5. The fkst approximation to

the substitute width ia therefore bsl=~j and with this

width the first analysis is carried out as previously
discussed. The stresses UFand u. are calculated for the
substitute single-stringer structure, and for each station
the ratio CJUF is calculated and used to determine the
value of 1% from figure 14. The spanwise average of
l% is then calculated and the corresponding value of
I – (yJb) is found from figure 15. This new value of
I —(yd~} is fierted in formula (17) tO obtain the second
approximation to bs, and the analysis of the substitute
single-stringer structure is repeated with the changes
necessitated by changing the substitute width.

If the stresses UF and q. obtained in the second
approximation differ very much from the stresses ob-
tained in the fimt approximation, n third approximation
may be made. On account. of the rapid convergence of
the process, the difference between the fit and the
second approximations need not be very small to insure
that the second approximation may be taken as final.
It is suggested that the stress analyst work some
examples by means of the anrdytical formulas given in
reference 2. As a rough guide, it may be stated that,
if the accuracy of the 10-inch slide rule ia used as a
c~iterion, tho second approximation may be con-
sidered as” the &al ouc wlwn the shear-lag parameter
KL for the entire b&m is greater than 4 in the firat
approximation. When KL ia about 7 or greater than 7
in the tit approximation, the first approximation is
sufficiently accurate. These relations are also in-
fluenced to some extent by the ratio AJAL.

The outlined procedure should be slight.Iy modified for
tixially loaded panels. In such pandsl the value of I%
bccouws infinite at the station where the axial load is
introduced. In order to avoid this difficulty, the span-
wiw average of the ratios qL/gI?should bo found and Yb
for the average ratio Ch/uF should be determined. This
method may be appIied to beams in many cases and
the finaI results obtained by the two methods will be
the same, at least for practical purposes. It is prefcr-
abIe, however, to usc the two distinct methods to avoid
uncertainties in procedure.

The method given for finding successive approxima-
tions to bs appIics directly only when there are infinitdy
many stringers. When there are only a few stringers,
the fit approximation bs, is not equal to b/2 but is
determined by the centroid of the areas of the stringers
as discussed in connection with figures 11 (b) and 11 (c).
In such casca, it may be awmed thtit the ratio of a
higher-order approximation of 6s to the first approxima-
[ion &l is the same as though there wcro many stringers;

any higher-order approximation LOthe substit utc width
is then given by the expression

(17a)

where the factor l–(@) is determined as lxforc from
figure 15.

METHOD OF SUCCESSIVE SHEAR-FAULT REDUCTION

Prinoiple and scope of method.—Thc analysis of
multistringer structures by successive shear-f au]t reduc-
tion employs the same basic procedure that is used for
the analysis of singie-stringer structurw. Somo mod-
Mcations and additiond concepts arc, of course, re-
quired to adapt the method to the murh more compli-
cated problem of analyzing multistringm structures.

The process of succrssivc shear-fau~t rcduution in u
single-stringer structure consists in n rcpl’t ition of
adjustments on a spanwisr sequence of drmcn~s, 1t is
obviously not feasildc to cimy on such ri prcwss of
adjustments at the samo time. on chordwisc scqumms
of elements. In order to ovrrcomc this difllcu]ty, a
concept wiII be introduced that has lmconm qui tr
familiar through tlw Cross method of mmmw t (list ritm-
tion, nameIy, the cotwcpt of locking parts of thr sWc-
ture in place to isoIatc thv ptirt lwing adj ushd from thr

rest of the structure, The particu]nr method of locking
employed herein consists in locking certain st ringcm at
a given state of longit udind strain; or, to usc n descrip-
tive expression, in imfigining them to be frozrn solid,
The stringm locked at tiny givvn time are the stringrrs
to either side of the one l-wing adjusted. The stringcm
are adjusted in scqumw, starting from the flungo and
proceeding t.o the c.enter-line stringw. The procms is
repeated until the agreement between succcssivr ryclw
of the computation is considered sat isftict ory.

Tho m[’thof? is obviously more laborious [Iron tho
substit utc single-stringer method. It is wry gwwml,
however, and is ctipabh’ of taking into account rflonl-
wise variations of stringm spacing, stringer nrm, fdwl
thickness, nncf shear modulus; it. can also deal more suc-
cessfully with structures having a vmy smnll numhw of
stringers (two or three).

In practice, it wiII probably be found advtintugmus,
in general, to use the substitut c singIc-stringer md hod
to obtain a first approximation. Average values aru
used wherever necessary. The method of shmr-fuult
reduction can then bc uecd to improve the am-mar-y of
the r~ults.

The method of shear-fault reduction htis onc ndvan-
tage that may be helpful a[ times. After LIIr constants
have been computecf and the first cycle has been cmn-
pleted, tbc work involved in succeeding cyrlcs is so
simple that it can bc hm-dlcd by computers with lit.tlc
engineering tr~lining.



Procedure for computation,—The computation is
shmtcd by assuming inititd values for the strm in au

stringws A to F (fig. 16), takingcare that at each sta-
iion the summation of the internal forces equaIs the
external force .3f/li or P.

The flange A is adjusted first. In order to effect
this adjustment, the stringer B is locked at the state of
stress initially assumed. The computation then pro-
ceeds in practica~y the same manner as described for
single-stringer structur~; the only ditierencc is that
thr VtdUeS of UL(in th~ CSSe u~) are not changed but
rt’main the same for aII cycles. titer a number of
cyclm-say five cycles—the adjustment of stringer A
is stopped, and stringer A is locked at the state of stress
just computed.

Before the adjustment of stringer A was started,
sttitic equilibrium existed between the internal stringm
strmscs and the extermd load at each cross section.
Aiter the adjustmrntr (’quihbriurn no longer exists;
before the adjustment of stringer B is started, it wi~l

—
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To this end,
or decreased

FK:L7EE16.

]W nwessar.y to restore this equilibrium.
the stresse~ in strimmr B ar~ increased
so that the summatron of the interred forces fit ea~h
station agtiin equals the external force.

Vi7th these cbrrected stresses acting in stringer B,
the adjustment of stringer B is started. Stringer A is
locked at the stresses obtained from the first process of
tidjust ment; stringer C is locked at the stre~es init idly
assumed. The detailed form of the computation is
shown in table 12 of part III and differs from that used
for single-stringer structures only in so far as necess~
to take into account the fact that there is a sheet and
n stringer on either side of the stringer being adjusted
instead of ordy one sheet and stringer on one side.

Columns 1,2, and 3 of table 12 give the values of the
stringer stresses LUl rcj ~.d uw They are listed in
this sequence to separate the values of u~ and uC,
which remain constant during the adjustment of
stringer B, from the stresses ~E and the other quantities
that change during the adjustment.

Columns 4 to 7 give the computation of the shear
force in the panel between stringe~s A and B; sLI
properties of this panel are denoted by the superscript
.4B.

705UU0-4S-13

Columns 8 to 11 give the computation of the shear
force in the panel between the stringers B and C; all
properties of this panel are denoted by the superscript
BO.

.

ColuIW 12 gives the diflsrence between the shear
forces in the two panels for each bay

D= A@C:–A@;

Cohn.n 13 gives the force F~= r~AB.
Cohunn 14 gives the increments AF~.
CohImn 15 gives the shear fault

SF= D–AF,

Columns 16 to 19 givr thu shear-fudt correction
stress Au~ in amdogy with the cohtmns 11 to 15 of the _
single-stringer computation.

After severaI cycles-say fi~-ecycks—the adjustment
of stringer B is stopped, and the stringer is locked at
the stresses thus obtained. . The process of adjustment
has again upset the stutic ec~uilibrium; that is, the ex-
ternaI force at any cross section ti not be exactly
baIanced by the summation of the internal stringer
forces assumed to exist at this stage. Static equilib-
rium is restored as before by increasing the stresses in
the stringer that wilI be adjusted next, namely, stringer
c.

Stringer C is now unlocke~i und adjuslcd, and the
procedure of adjusting ami restoring wpilibriurn is
continued unt iI the center stringer is reached. The
entire proc.w is then repeated severrd times until suc-
cessive vfdues of all stringer stresses in the structure
are in sufficiently cIose ag.gment.

In the case of a cambered cover,” it is necessary t6
introduce the same rnodificution as discussed for single-
stringer beams, based on the modified basic equation
(lc’). After cohunn 4 of table 12 a eohinn must he
added for [(rd— u.)– (UAP– u~~l; simiiarly, af ter column
8 a cohnnn must be added for [(u~–uc)– (&-&)].

ANALYSIS OF CUT-OUT ZFFECTS

Principle and scope of method.—The most convenient
and the most rapid “method of aneIyzing structures
with cut-outs is the indireot, or inverse, method. The
amdysie by the indirect method is made in two steps.
First, &e structure is amdyzed for the basic condition
that exists before the cut-out is made. The remdts
of this basic analysis are used to calculate the internal
forces that etit aIong the boundary of the proposed
Cut+ut. External forcw equaI and opposite to these
internal forces are then introduced; th- external
forces reduce the stresses to zero along the boundary
of the proposed cut-out, and consequently the cutiut
can no-w be made without disturbing the stresses.

The extermd forces introduced to reduce the stresses
along the boundary of the cutaut to zero wiII be cakd
the “liquidating” forces, a term used by R. V. South-
well in a somewhat chtTerent meaning. In general, it
wiU be impoasible to mdculate accura!e~y the stresses
that these Liquidating forces .aet up at a distance from
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the Cutrout. Some simplification of the problem is
permissible because the, liquidating forces form self-
cquilibrtited ~stems so that, by St, Venrmt’s principle,
their eflccts become negligible at some distance from
the cut-out. In order to obtain numerical answers,
however, it @ necessary to make very stringent sim-
plifying assumptions, and the method. can therefore
be applied only to reasonably small cut-outs.

The treatment given here is confined to structures
having distinct stringers. For cases in which the
stringms rmd the skin me fused into a homogeneous
unit, it is preferable to use the standard methods of the
theory of Plasticity; some solutions of the cut-out
problem for such cases may be found in publications on
the theory of elasticity.

EfTects of removing a skin panel.—Figure 17 (a) shows
the intmnal shear forces that exist along the edges of a
skin pa.rwl bounded by two at ringers and two ribs.
The directions of the force arrows are the positive

I-

r
x

Tip ~ (a)’

%0?’f

equivalent to assuming that tbu skin panvls BC and
DE are rcw.h-wed inoperative by slot,ting thrm length-
wise. ~Tnder this assumption, the probhw bmmmm
idrntical with the problem of the frre pruwl shown iH
figure 18. The analytical solution for UN frw pnnrl is
given in rcfcm.mce 1; for the present purposr it can 1}0
simplifiwi by assuming that thP strucl.urc is very long
on cithm side of thr cut-out. Thr forws in (he st,ringcrw
inboard and outboard of t.hc cut-out urr t Iwn given by
the formula

P=+ +-K* (lHtl)

where To is th btisic shmr stress existing in ttw ptinrl
before the cut-out is madq, t is the thi~knm of. the
panel, L is the length of the cut-out panrl, and K is thc
shear-lag ptirametcr defined by

FIGIIRE17.–EIT* d r@mwIng a skh PMId.

directions in accordance with the general sign conven-
tions. In order to reduce the shear stresses along tlw
edges of the Ptincl to zero, external or liquidating shear
forms ar~ introduced as shown in figure 17 (b), which
are equal and opposite to t.lw intmnal shear forces; only
the forces acting on the main st.ructurc arc shown in
figure 17 (b) bccausc the stresses in the skin prowl ~tdf
are of no interest.

In most practical cases, the stringm arms and the
skin thicknesses just outbotird of the cuhoutf ar~ the
same as those just inboard of the cut-out. The
stress-distribution set up by the liquidating forces will
then be symmetrical about a chordwise line bisecting
tim cut-out. Figure 17 (c) shows .schematicdly the
stresses set up in the stringers with the signs appropriate
to the case wlwrc the basic stres.ws -me positive. The
figure indicates stresses only for the two stringers
bordering the cut-out; the stresses’ in the other stringers
are small enough (as will be shown experimen WY in
pt. HI) to be neglected in view of the fact that th~
changes in stress distribution caused by a small cut-out
orc small compared with the basic strews. .

Thu assumption that the liquidating forces of figure
17 (h) sd up stresses only in stringers C and D is

B“.””c D“

(c)

I
I
t
I
I

I
IA1
#1,t#
1

FIGWI 16,-FM wet.

The signs of the stringer stresses set up by tllr liqui-
dating forms P are indicated in figure 17 (c) for thr
case of a positive btisic shear st was 7.. Thv shww
stresse9 set up by the liqui(lutillg forces nrc given hy

and arc of such H dirwlion as to incrmsc .t..hcb~ic .shuur
stresses, 11’ithin the region of [IN’cut-out, the stringm “
forces vary lineurly Ix4.wecn the ma.timum wducs
obtuinml by setting *=O in formula (18a). Thc con-
vention for measuring # in formulas (18a) nnd (18c)
is shown in figure 17 (a).

The shear stresses givel] by formuln (18c) arc prob-
tibly conservative lwcausc some of the shear load is
taken by the adjoining panrls, which m assumwi to be
inopcrat.ive in this simplified theory. Convcrwly,
allowance must be made for increased shcm stresses in
the adjoining panels. Considrmt ions of continuity
indicate that, in the immediate vicinity of the corners
of tl;c cut-out, the mtiximum shear slrwscs in the .
adjoining pans+ BC and DE of f~urr 17 should be
taken as cqunl to the mnximum stresses given by
formula (18c).
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Effeots of cutting stringers.-l?igure 19 (a) shows s
cuhout obtained by removing three skin panels and
cutting two stringers. The eflects of removing the
skm panels can be calculated by the method described
in the preceding section. The effects of cutting the
stringers are represented by the liquidating forces P
shown in figure 19 (a). The liquidating forces cause
compressive stresses in the cut stringers and tensile
reactions in the uncut stringers if the basic stresses are
positive, that is, tensile. By analogy with the preced-
ing case of the skin panel, it may be assumed that the
tensile reaction” to the Liquidating forces is entirely
furnished by the two stringers bordering the cut-out;
the stress system shown in figure 19 (b) is based on this
assumption, and the numerical solution is obtained by
considering ,one cut stringer and the adjacent con-
tinuous stringer to work together as a free paneI.

Roof
t! CD,E Ft

—

—

II
“PP

>.pp

I

, HI
.

P

P

.

@)

where b denotts temporarily the effective half-width of
the cut-out. The teats to be described in part 111
indicate, however, that, even when only one stringer is
cut, it is justifiable to assume that several of the con-
tinuous stringers participate m furnishing the reaction .._. __ . ._
ta the liquidating forces. The sirnple@ assumption that ..__
can be made about the participation of other stringers
is expressed by setting .-

Az=AG+AEe-41b+.4ti-M~h+ . . . (21)

when formulas (19) are used. The stresses caused by
the liquidating forces are then

-

—

DE FGI+ -

—

(b)

(22)

The solution for the free paneI (fig. 18) of ifiite When ody one stringer is interrupted, half of it is con-
length is

(19d)

If symmetry about a longitudinal line through the center.
of the cut-out is assumed, the numericaI solution for the
cut-out is obtained in the first approximation by
setting in formulas (19b) and (19d)

A,=&=Ar Az=AD=& d=b (20)

-—

-L— ——

. .

. .

..— —

sidered as constituting Al. When n stringers are inter-
—

mpted, the n/2 stringe~ on each side of the cut-out are
considered to constitute Al, and they are assumed to be
concentrated at their common centroid to determine 6.

It is apparent that the use of formula (2o) wiLl be “-~“
conservative for stringers .D and G and the skin panels
behvcen them but somewhat unconservative for

----

stringers and panels distant from the cut-out.
At prwcnt, insufficient theoretical or experirneutal

knovdedge is available to define the limits within which .
the method prewnted here may be safely wd. It
would seem advisable to consider this method as giving
onIy a first approximation when more than three
stringers are interrupted by the cut-out. The method
of shear-fault reduction must be resorted to in such
case9 to improve the accuracy of the results..
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FIGURE &?&-Panel for telswithaxialbad. Sheet 17S-T. Stringem MS-T,
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IL EXPERIMENTAL VERIFICATION OF THE
THEORY OF SHEAR LAG

TEST OBJECTS ANDTEST PROCEDURE

New NACA tests.—Previous experimental investiga-

tions on shear lag have been generally confined ta panels

and beams of constant cross section; it was therefore

considered desirable to obtain experimental verification

on a beam with a variable cross section. Although the

cross section can be vnried in a numb& of ways, it was

deemed most important and instructive to verify tho

iniiuence of tapering the cross+cctional area of the

strmge~.
A skin-stringer panel was therefore built as shown in

ilgure 20 and tested in three different set-ups. A photo-
graph of the second set-up is uhown in f3gurc 21. In
order to obtain a sensitiv: check on the theory, tho panel
was designed for large shear-lag effects by using a largo
ratio of stringer area to sheet area.

The tension panel was then converted into a I.warn by
additig shear webs; a cross section of the beam is shown
in figure 22, and figure 23 shows the inside of the beam
with strain gages set up at” one station. This beam is ‘-
designated beam 1. Beam 1 was also tested with two
small cut-outs and two large cut-outs located symmet-
rically to the longitudimd axis. Figure 24 shows a
strain-gage se~up on the beam with tho large cukmts.

After the cut-out tests were completed, the beam was.
cut off just outboard of the first bulkhead, producing a
very short wide beam, designated beam 2. The test
set-up for this short beam is shown in figure 25.
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FIGUUE21.—Tcstset-upfor psnel,
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It was dsci considered desirable to verify the vafidity
of the theory in the limiting case of a beam without
stiffeners. The dimensions of a beam built for this pur-
pose, designated beam 3, are given in figure 26, and the
test set-up is shown in figure 27. In order to obtain a
sensitive cheek on the theory, the beam was made
quite short.

As indicated in figure 26, beam 3 wm tested in two
conditions: first without corner flanges (origimd crgss
section) and then with corner flanges consisting of flat
strips riveted to the cover as close to the corner as pos-
sible (modi.fkl cross section).

The beam was built and loaded eyn&etricaIIy about
a transverse phme; it was thus poasible to reaIize. the
condition of a buiIt-in end and at the same time
measure strains directly at the root section.

,
s

r

— — — —— — u—
~
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I

to

~“”-212 IXfx:46

I ‘ JILL
..----% x 2 sfrfpf~ rcuf ?% mdpoht

FIQLm 22.-Crccssectionof km 1. Cow of bfsm 2spmd shown in Egrrm20.

—. . .—.. . .---- 1.-— i

.—. . .— - . . ... . .~— . .=.. ~ ~.-..,.
+22...— .. “k

FIGURE23.-Tast set-up frx km L

L. ..-

~ .—:!
Fmcsu 24.-Test 6fkuP fm bean I with ret-outs.

FIGmE M—T* set-up br km L

i P (a) 1P

(4we Vfew.
(b) Orfgtnal mm sdom
(c) ModlfM Crm SeciIon.

~G13U 2S.-Beem 3. Sheet 249-T, E=IO.6XIW strim@rs 249-T, E=103X10J.
BuIkbds notshownon crosswtbrm

FKGrmE2i.-Test $et-q~f(x bean .1
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FIOUR~!iS.-Sketch of test beam from referenee5.
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Case 2 “” Case 3
FKWEEZ9.-Dlagramof Iond[ngeses for panel. P= 12X~unds.

All strain readings were taken with 2-inch Tuckermrm
gage+. These gages were always used in pairs on op-
posite sides of the sheet or the stringer to eliminate m
far as possible the effects of local bending. Temperature
variations during the tests were confined to 10 F,
limiting the error in stresses to about 60 pounds per
square inch.

The load was applied in four equal steps m all of the
cases except one, in which case three steps were used
(beam 1, cam 4). The stress readings plotted corre-
spond to the highest test load used but were obtained
by drawing the best-fittig straight- lines through the
load-strnin plots and correcting for zero shift when nec-
essary. The friction of the loading apparatus was
measured several tim~ during the tests and was found
to be 2 percent, unless otherwise noted on the spanwise
stress plots. Comections have been applied for friction.

Young’s moduh’ for the stringers were determined
from several specimens cut from the beams after the
tests had been completed. For the sheet used to man-
uf acture beam 3, the modulus was determined from
several test coupons cut from the same sheet from which
the beam was fabricated. The moduli obtained are
noted on the drawings of the specimens.

In all these tests the buckling stress of the sheet was
never exceeded enough to cause an appreciable reduc-
tion in the average shear modulus. In many tesk
there was no visible buckling at all.

Old tests reana~yzed .—Because” the methods of anal-
ysis proposed in this paper are relatively new, it seems
desirable to buttress them with as many experimental
verifications as possible. An effort was therefore made
to secure all available test results and to analyze them
by the proposed methods. It was found, however, that
many published tests were of doubt~ value for fur-
nishing quantitative checks because va, thin sheet that
buckled at low loads had been used in hese tests; the
eflective shear modulus cotdd not, therefore, be calcu-
lated with sufficient accqracy for a quantitative check.
The tests considered usable were a test on a compression
panel made by White and Ant.z (reference 4) and two

beam tests reported in reference 5. The bcnm tested

in reference 5 is shown schemntimlly in figure 2S,

TEST RESULTS ANDCOMPARISONSWITH THEORY

Methods of analysis used.—Al1 calculations were
made by tinalyzing the substitute single-stringer stfic-
ture by menns of the recurrence formuia. The strwics
in the stringem were computed by using the method of
chordwise distribution as. &scribed in pnrt I of thie
paper, including the correction for a finite number of
stringem. Unless otherwise noted the calculated re-
sults shown as curves in the figures are those obt.nincd
with tlie skcond approximation for the splmtitute width.

Par(T doe9 not give explicit rules for determining the
width b8 of the idealized sheet bctwtwn stringers wlwn
the stringers are arranged as in beam 1. The sheet. was
assumed to be clamped l.wtu-een the opposing stringers
with an effectiveness of 50 percent.; in other words, the
calculations were made as though the stringers were
attached by two rows of rivets w’parat.ed by lmlf thr
width of the stringers.

New NACA tests,—The panel was tested under three
conditions, as schematically indicated in figure 29.
Figures 30 to 32 show the exTmimental tind the calcu-
lated resuh.s in the form of sptinwisc plots of stress,
F~urea 33 and 34 show the corresponding chcmlwise
plots for the first two cases.

The agreemcmt between experimcmt nnd theory is
very satisfactory except nwir the rociti in cases 1 and 2.
The experimental points in this region scatter badly
about a mean line (figs. 33 imd 34). Integration of the
measured stresses over the cross section gives internal
forces that agree within about 5 percent with the exter-
nal load, indicating tbtit the st.rnin measurmncnts are
fairly accurate but that there was some h-rcguhw be-
havior of the structure. It was thought that. this ir-
regularity might be caused by play in the lJolt holes at
the root; sevcrd holes were therefore carefully reamed
out for the next larger size of bolts before making the
beam tests, and the chordwise plots of stresses for the
beams were much more regular.

.-
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Beam 1 was tested under the four loading conditions
shown in figure 35. The spanwise strms pIots are
shown in figures 36 h 39. The agreement between
tests and theory is very satisfactory for the most highly
stressed stringers near the flange rind for the flanges
themselves, except for the fact that the experimeni%d
strew in the flango at the station nearest the root is
slightly high in cases 1 and 4. In the stringera near
the center line, the experimental stresses arc higher than
the calculated stresses near the root in cases 1,3, and 4.
It is believed that the discrepancy can probably be

charged to the asmupption that the sheet was 100 per-

Figure 41 shows the results of test i on l.wam 3.
Becau= the beam is symmetrical shout the longi-
tudinal axis as well as the transverse axis, there nrc four
strws values for each s~ation. It will bc noted that in
most cases the four valucs agree very closdy, whirl]
indicates that the beam showed excellent. symmetry of
strain about both axes.

This test is a rather crucial test on the mnge of
validity of the theory. It has been hehi by eOmc
investigators that the theory of shear lag as devrlopcd
in this paper wodd not apply to the limiting case wlwrc
the elements of tbc cover carrying shmr (the slwet
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cent effective in contributing w the stiflener area.

There are fairly consistent indications from a number of

teats that this assumption is too optimistic when the

ratio UF/UL iS large. A similar observation was made in

reference 6, This remark applies both to the compres-

sion side when the stresses are below the buckling

stresses for the sheet and to the tension side. On the

compression side, the well-known eiTective width of the

sheet must be used when the sheet has buckled.

The results on beam 2 are shown in figure 40. In view
of the fact that this beam has an extremely smaII ratio
of length to width as welI as a small shear-kg parameter
K, the agreement is excellent.

panels) and the elements carrying normal strmscs (thr
stringers) are merged into a si@e unit~ ]]amrly, a sheet.
Figure 41 shows that this opinion is too pessimistic; the
agreement is not perfect, but. the maximum flange
stresses, which are of paramount int mest for design,
are predicted fairly well.

The main difficulty in applying the theoly to the ram
just discussed lice in the fnrt thwt Ar becomes wry
small compared with AL; the flrmge mca consists only

of the” arm % M, whid expresses thc participation of
the shear web in the bending action. For small mtios
of AF to AL, the shear-lag pammetm K becomes very
large and sensitive to mrors in .4~. The diflhuity is
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Sfress,kfpsjsq m.

FIGL-M 33.-ChmdwIse dhkfbutiom c4stresss In LWJM,C&SE1.

.

FIGmE 34.-Chcrdwk dhtrflmtfond atc~ h W* H Z

obviated when a coruer flange of reasonable area is
provided; in buiIt-up structures, such a corner flange is
usutiy provided in the form of an angIe for riveting
the cover to the shear web. In beam 3, a corner flange
was provided by riveting flat. strips along the edges, as
shown on the second cross section in figure 26. The
test rewdts for this condition arc plotted in &ure 42
and show excellent agreement with the theory.

Old tests.—Figure 43 show-s the experimental and
the calculated results for the compression panel de-
scribed in reference 4.

Figure 44 shows the results of the test on the beam
described in reference 6 for a load applied at the tip.
F~e 45 shows the test results for the same beam under

lode distributed as indicated in figure 28. The agree-
ment is fairly satisfactory.

cut-out tests .—The approximate method of and~
ing cukut.s described in this paper is bnsed on the
assumption that a pair of equal and opposite forces
applied to adjacent stringers does: not affect other
stringem very much. A speciaI test was made on
beam 1 to verify directIy the validity of this assump-
tion. Two equal and opposite forces of P= 1162 pounds
were applied to boka at the intersections of the rib at
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Figure 47 shows the results of the test on betim 1
with small cut-outs located as shown by the sketch;
only the skin was cut out in this case.

Figure 48 shows the. residts of the test on be&l I
with lmge cut-outs located as shown by the sketch und
in figure 24. The ugreement between thec~ and
experiments for the cut-out tests is very satisfactory
except for the discrepancies already noted in the.
tests on the same beam without cukuts.
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111. NUMERICAL EXAMPLES

IDEALIZATIONOF CROSS SECTIONS

Problem 1,—To find the idealized cross section of a
beam with open-section stiffeners:

The actual cross section of the beam is dwyn in
figure 49 (a). The effective. width of the She$t for
normal stresses ia to be taken as w=!20f.

The idealized width d for shear deformation (fig 11)
is equal to the width between rivet rows, that is, 4
inches.

Tbe area of the idealized flange is obtained by adding
the following areas:

MTunrehld
. Corncranglc--- .-.---------.-.-...-J.--. 0.300

Skin from oortkr to rivet line (0.375x0.040]. .015
Equivalent of wob (~X6.00X0.065)-------- .065

——
Arcaof idealized flange. -.-, -------------- 0.380 - _

The fifit stringer “immediately adjacent to the f{tingo
consists of only the cffectivc width of skin; the urrw
is”

20X0. 040X0. 040=0. 032 square inch

Iiach of the next two stringers consists of u stiff’encr
and u double strip of skin; the urcw of each idenlizcd
stringer is t.llerefo rc

A=O. 200+2x20x0. 040xtl 040=0. 264 squnre inrh

The s~inger ut the center line hus onc-hulf tllh urcu,
or O. 132 squtire inch.

.. b.=
1.50

0.080X 1.50
=0.75 inch

] +0.d’loxml

The icletilizwf width from tho flwgc to thv first stringy is
therefore

J=3.25+}X0.75= 3.03 inrhrs

zmd tlw i(ledizcd width of the scrod and t hiA PIInrl is

cf=2.50+0.75=3.25 inches

The areus of the fhingo AF and of thc first small .stringw
arc the same as in problrm 1.

‘1’hemwu of the sccrmd us wdl as of thr third iricnlizwl
stringer is obtnined by adding the following rmas:

4uartinch

Hat *et.iOIL ------------------------- . . . . . . .. 0.260 _ _
Skin betwcc’n riveh (1.5X0.040) . . . . . . . . . . . OW
TwoArip of skin (2x20 x0.040 x0.040) . . . . . . .004 _

Arwof idealized stringer -------------------- O.384 ‘ _.

The Stringer at the center line has one-half this area, or
0.192square inch;

The total area of the longitudinal is

A~=0.032+0.384+ 0.384+0.192=0.992 square inch

The idcdizcd croee scctiou is shown in figure 49 (d).



SHEARLAG IN

ANALYSIS OF A MULTISTBINGRRBEAM, OBTAINEDBY
THE USE OF TEE SUBSTITUTESINGLE-STRINGER

METHOD AND THE RECURRENCE FORMULA

Given data.—F@re 50 shows, the idealized form of a
beam; the problem is to find the streeses in this beam
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under the load indicated by the use of the substitute
singk-stringer method and the recgence formula.

This idealized beam is very ne&y identicaI with the
idealized form of beam 1 discussed in part II. Th~
folIowing simplifications have been made: The slightly

BOX REAMS 195-.

tapering effective width of beam 1 his been replaced

by a constant width; the slightly tapering effective

depth, with a discontinuity at the midspan, has been

replacMi by a constant depth; the load has been bcated

exactly at the tip instead of at the actual Iocation of
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0.56 inch from the tip. h~one of these deviations
amountq to more than 2 percent at any point; the results
obtained in these numerical examples can therefore be
compared quite closely with the corresponding cal-
culated curves shown in part 11.
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From the data given in figure 50, table 1 has betil~
prepared to givo the dnta in the form required for the
Sndyais.

“ First approximation to the substitute single-stringer
structures. —The first approximation to the substitute
single-stri ngm structure is obtained “by combining the

FIOURJ!43.-Comprdson.s between edeuiakd and exsmrbnental stresses h PSnd of
rdkuenm 4. .

8tringer8 ~o~tituting & into U si@le s~ringer loded
at the centroid of AL. As indicated in figure 50, this
centroid i.. located 6.28 inches from the flange, and
this distance is by definition the substitute width in
the first approximation.

The computation of the coefficients required for the.
analysis” of the substitute beam is shown in table 2.

The values of Ar and AL are the same as for the actual
structure and me obtained from table 1. The shear-lag
parameter K is cdcuhtted from formula (4). The
substitute width & just found is used where b appeam
in this formula, so that

G’t 0.40X0.015 0000956
E& ‘~ “

The coefficients p, g

AERONAUTICFr

Yand T ar~ calculated hy formulas
(3u), (3b), and (3c); hccausc G and I arc conshmt ill
this pm%imdar beam, the common far{ or Gf lms km

omittd from all coefficients.
~.
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FIGURE 4L70mwL!mY hdwiin cdcuktd fid oxrerlmentd sb’ews In bcaru~-
Mk.rerxe u for tip kind.

With the coefficients computod in ttildc 2, th(’ systwu
of equations for the X-forces (fimt approximate ion) is

J&fian.s
(a)Stres3in iknga.
(b) Nres In muter strlr@r.

FWLW 40.-Gmrxufeon8 between calculated md exmmorrtd stmses In km d
rwkrenca6 for dlstrlbukl losd.

written in conformance with equations (5). Tbc
boundary conditio:~ are XO=O and -y,~l=O.

–X,(C. WO+0.1333)+X,(0.1182 )=-M.7+66.5
X,(O.1182) –X,(O.EM8+0.1376) +XJO.1190) = – 66.5 +66.3
X,(O.llW) –X,(0.1376+0.1362) +XJ0.119V == M.3+66.1
X,(O.1191) –X,(O.1362+0.1358) +X’(0.1200) = –66.1 + 66.0
X,(O.1200)–x’(o.lam+o.1347)+ Xdo.lm)=-m. o+ 66.0
X5(0.1201 )–Xd(0.1347) = –66.0

-.

. .-

.

. .

.
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Th=c equations are then ached, and table 3 ghws the
final computation of the stresses in the substitute beam
as obtained from formulas (9a) and (9b).

Second approximation to the substitute single-
stringer structure.- The cahmlation of the second
appro.xirnation begins with the last two cohunns of
table 3. The parameter X3 is obtained from figure 13
for each station, and the average vaIue of I% is com-
puted. From ilgure 15, tho value of 1– (VL/b) corre-

sponding to this average value of 1% is read} ancl the

second approximation to the substitute width is ob-
tained by formula (17a). Actually it is not necessary to
compute the second approximation of bS; it is possible

to proceed directly to the new values of the shear-Iag

parsmeter~by dividing the vahs of ~given in table 2

by the expression ~2[1 – (yL/b)]. Table”4 givw the

the ratio uL/ti==O.535, and the corresponding vtdUe Of... __
Y%= 1.760 from &ure 13. This value of 1% is entered
in tabIe 6, and the values of YVfor the two intermediate
stringers B and C are calculated by proportion and

entered in cohmm 2. N1ext, the hyperbolic cosines are .

entered in column 3. The stress tithe center stringer -
D is now crdcuhted by formula (16)

-.—-—

UCL=-= 1673 pounds per square inch

and entered in cohunn 4. The str-w in the stringers
B and ~ are then calculated hy formula (14) and entered .

in column 4.
Cohunn 5 gives the cross-s~tional areas of the string-

ers A,f, and c&mm 6 giv~ the interred forces m4,f.
T?N sum of these forces will not equal the force ad= on

,_,.&5.y.y.., -

t
392>% #230 ...318 “./59....

Q&
A ‘B ‘ ~-c
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F~GLZHZ&io.-Bcam osed for numerkd CXM@.S.

new values of K and tho computation of the new set of
coefficients p and g for the recurrence formula. Table 5
gives the vahea of the X-forc~ and the find stresses
in the beam for the second approximation. As a check,
the average value of ~% is again “computed, and the
correspondi%~ value of 1—cv~b) is found. The facto~

~f~l= (%/b)~ diRers by onl~l percent from the factor
obtained in the first approximation; the second
approximation may therefore be considered the- find
approximation.

Calculation of chordwise distribution of stresses.—
After the final approximation ta the stresses in the
substitute beam has been computed, the chordwise
di+ribution of the str- in the actutd beam can be
found. As an example, the calculation viiU be shown
in detaiI for station 5.

According to table 5, uF=5000 ptmnds per square
inch and c~=2673 pouncla psr square inch for station 5;

t
&

T@
..

account of the finite number of stringers, and a cmrec-

tion must bc applied ta alI of the sjresses u except to

the strees in stringer A; the stress in stringer A must ..9...

neceasariIy remain equal to Cr. .

The correction is made as follows: The force ~’ is

~dL=2673 XO.771 =2060 pounds. The force in stringer
A is 140 pounds, as shown in column 6; the total

... —--

force that must be supplied by the cmter stringer D
and the two interrmdiate stringers B and C is thereforo

2060—140= 1920 pounds. The summation of the inter--- -.-”

ml forces in the three str~~ers B, C, and D as given in

column 6 is only 1715 pounds; the stresses is given in
cohun.n 4 must therefore be multiplied by the factor
1920/1715=1.120 to obtain the fhal vahms of the
stresses a, which are Iisted in column 7. As a c~eck,
the int ernd forces are again comput@ with the cor;.-—
reeted values of u; the summation ‘cheeks exact Iy with
the force F’~=2060 pounds.

—

Km440-4 s-14
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The calculation of the chordwise distribution of
stresses is made in the same manner for each station;
the results of the calculations are given in table 7.

ANAm31s OF ;ULTISTRINGER BEAM WITH CUT-OUT

It will be assumed for the example of a multistringer
beam with cut-out that a cut-out is made in the beam
shown in figure 50 and analyzed in the preceding ex-
ample; the skin panels AB and BC and the stringer B
are removed between stations 3 and 4%1Corr=ponding
to the large cut-out in beam 1 described in part 11.
The effects of making this cut-out are to be found.

. IWeots of removing skin panel AB.—The total shear
force in the skin panel AB between stations 3 and. 4X
is found by statics with the stresses given in table 7;
it is equal to the sum of the forces in stringers B, C, rind
D at station 4!4minus the sum of the forces in the same
stringers at station 3. ‘l%e result of the simple calcu-
lation is rOtL=484 pounds. The next step is the. calcu-
lation of the parameter K by formula (18b). In this
case, the cut panel is bounded by stringers A and B;
the aretM & ~d AD of fo~ula (18b) are therefore
replaced by AA ~cl AB. In order to be consistent with

the assumption that the structure is the same at the
two ends of the cut-out, the V&WS of AA and AB USWI
will be those valid for the middle of the cut-out. Form-
uln (18b) givea therefore

~ 0.40X0.015 1 + 1
‘~ (

——
)0.355 0.271 ‘0”01078

K= O.1O38. .. .“ . “.

After these preliminary calculations, tlw solution can
be carried out in tabular form as shown in table 8. Tbe
value of P titstations 3 and 4jf is %t~=242 potinds;
at the other stations P= 242e-K’ poimds according to
formula (18a). The calculation of the stress.w P/AA
and P/AB ia self-explanatory.

Effeats of removing skin panel BC.—For panel BC,
the shear force is found by subtracting the internal
forces in stringers C and D at station 3 from the forces
at station 4X; the result ia

.r~~=19ti pounds

The value of K is found from

~=o.40xo.015 1
(

1
3.625 )0.271 ‘0.271 ‘0”0122

K= O,11O4

Table 8 shows the details of computing the stresses
PfA, and P/& caused by removing the skin panel BC.
The last four rows of the table give the stringer stresses
in the beam, obtained by superposing on the stresses of
table 7 the stresses caused by removing the two skin
panels AB and BC. The signs of the stresses are deter-
mined by compmison with figure 17 (c); at station 3,
for instance,

UR= 2370+ 945— 381=2934 pounds per square inch

where 945 pounds per square inch is the stress caused
by removing panel AB, and 381 pounds per square inch

is the stress caused by removing paneli BC.

Effect of outting stringer,-According to the stresses
listed in table 8, the stress in stringer B at station 3 is
uB=2934 pounds per square inch. The internal force at
the outboard end of the cut-out is therefore 2934X
0.256=$52 pounds. At the inboard end of the cut+ut, ‘
the force is 2614 XO.287=750 pounds. The region
around the cutxmt is now divided into four free pnncls
so that formulas (19) can be used. Two of those panels
are inboard of the cut-out; for the first panel

for the second panel

A,=$A. and iL=Ac+e-lA~

by formula (21), all rwerrs being those at station 4% ~
For simplicity, it will be assumed that the two panels
have the same shear-lag parameter K, and Ar will bc
computed by using the average of the two given values
of A2. The result is

~=o,40xo.015 1
(

1——
3,625 )0.358+0.1435 ‘0’01618

K= O.127

for the inboard panels.

The other two free panels arc outbotird of the cut-out
and are defined in thu same manner; the calculations aru
mrde with the arms HLst atlion 3. The shcnr-lag pruam- ‘
ctw is given by

K= 0.1347

The calculation ibelf is given in tabh’ 9. ‘flu streascs
caused by cutting stringer B shown in this tablo arc

superposed on the final stresses shown in ttible 8 to
obtain the final stresses in thu stringers. The stresses
in stringer D caused by cutting stringer B are obtained
by formula (22) as e-’ P/AZ.

When the results of this computation m eomparcd
with the curves in figure 48, itshould be borne in mind
that an additional small correction must Lu made for the
actual test because removal of tlw skin panels reduca~
the areas AA Hml AD in the region of the cut-out.

ANALYSISBY SUCCESSIVESHEAR-FAULTREDUCTION

Analysis of single-stringer beam.—The method of

analyzing a single-stringer beam by successive shcar-

fault reduction wilI be demonstrated on the substitute

single-stringer beam analyzed prcvioudy by the recur-

rence formula, The basi$ data for the beam are those
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given in table 1; for the substitute width, the second
approximation &=6.28 X1.090=6.85 inches was used.
As the Wltial assumption, the str-= in the flange were
mbitrariIy assumed to be 1.4o times the stresses given
by the iMc/1 formula. Table 10 giTes the fit cycle of
the computation; a comment on the form of the com-
putations is given in part I of this paper. Table 11
gives tho second cycIe of the computation, starting with
the values of u~ found at the end of the first cycle.
As a generaI check on the computations, the sum of the
shear faults is shown for both cycles; it will be noted
that It has decreased from 843 to 764 pounds.

Analysis of multistringer beam.—As an example for
the amdysis of a muItistringer beam, the beam ,of
figure 50 is again used, and a typical cycIe of adjust-
ment for stringer B is shown in table 12. Because the
example is ikstrative, the stress vaka r~, ffB! ~d cc

were not amumed arbitrarily but were taken from table
7, the final result of the previous smalysis. Tho shear
fauha are therefore very smaU, and the adjusted streses
o are practictdly identical with the iuitial stresses.
The small ~erences that exist arise from two reasons.
The &t reason is the Ihnited numerical accuracy of
the process. This numerical accuracy is determined by
the number of bays used and the accuracy of multipli-
cation and division. These operations were carried
out with a 10-inch aIide rule in all nmnericaI exampIes
given in this report. The second reason for the failure

of table 12 to ahow exact agreement between the initial
and the fial values of UE liw in the alight differences
between the basic assumptions. Thereourrencc formula
ia baaed on the assumption that the moss section is b

constant in each bay, but the stresses vary nonlinearly
in each bay. The shear-fauh reduction method, on the
other hand, aesmmes that all stresses vary linearly in
eaoh bay.

CONCLUS1ON

The theory of shear-lag action presented in this
paper ia based on the concept of idealized structures
consisting of stringera carrying longitudinal stresses,
of sheet carrying ahear &ases, and -of tranmyxae ribs
ir&niteIy closely spaced and of infinite stitlness. The
test results indicate that this theory is acceptable as a
basis for practical stress analysis because, in general,
the differences between ted results and calculated re
SUMSin the critical regions are smaller than occasional
scatter of test results caused by uncontrollable ir-
regularities in the behavior of the structure.

LANGLEY i~EMORTAL AERONAUTICAL LABORATORY,

h7ATION-AL ADVISORY COMMITTEE FOE AERONAUTICS,

LANGLEY FIELD, VA., iilarch 7, 1041.
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APPENDIX A

SYMBOLS

A
E
F
G
I
Q
K
L
M
P
s
SF
$FC”
]7

b

b’
h’
t
w
x
v
T

cress-sectional areti, q in.
Young’s modulus, lb/sq in.
internal force, lb
effective shear modulus, lb/sq in.
geometric moment of inertia., in..4
static moment of area about centroiclal axis, in.3
shear-lag parameter (equation (4))
length, in,
bending moment, in.-lb
extarnal load, lb
shear force, lb
shear fault (equation (SS-3))
shear-fault correction .(equation (S$-4))
auxiliary parameter (equation (14))
half-width of structure, in.; with numerical

subscripts, distance between stringers
(fig. 12), in.

developed width, in.
depth of beam, in.
thickness, in.
effective width
distance paralhi to center he
distance from center line
ahear strain
202

u direct (normal) stress, lb/sq in.
T shear stress, lb/sq in.
To basic shear stress existing before u cuhmt is

made, Ib/sq in.
Superscripts have the foilowing significance:

P theoretical wdues based on the rwsumpticm thu t “-
plane cross sections remain plane

Subscript have the following significuncc:
c
E
F~.

s
8t
T
w
CE

CL
i
o
ow
e

cover sheet

external (applied )
Slange
longitudinal
substitute
stringer
total
shear web
ocqurring in the cover sheet an;l obttiirwd by

the elastic rdation
winter line
inboard
outboard
average
effso tive

..‘
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.

COMPARISONBETWEEN DIFFERENT SOLLI’ITONS OF THE SHEAR-LAG PROBLENI

‘- The basic shear-lag problem is the problem of a box
beam with constant cross section. k 1930 Youngel
pubbhed a edution of this problem (reference 7). Iu
1937 there was published a sI@tly Werent solu~ion,
the constant+tress solution (reference 1). In 1938
Reissner published a third solution (reference 8). lf the
flange efficiency q of a box beam is defied by the ratio
of the iWc/1 stress to the actual flange stress, ti three
solutions can be reduced to the same form, namely,

tanh Fq=
F

where F is a function of the geometrical and the physi-
caI properties of the box. This function 1’ is defied
as follows:

(Younger: reference 7)

(Kuhn, reference 1)

(Reissmm, reference 8)

It wd.1 be seen that the three solutions are identical m
form and differ only sIightly in the numerical constant.

AU three solutions involve some simplifying assump-
tions, and any one of the three could be used equally well
as a basis for building up approximate. solutions for
beams of variable cross section. ~ three solutions,
however, lead to the result bat tie fl~ge eficiency ~
constant along the span. A glance at figures 41 and 42
indicates that this rendt cannot be more than a rough
approximation; the flange atmsses on Wse figures are
not straight lines. For this reason, the treatmmt of
the beam with mmiable cross section as prwatid in
this paper was not based on auy of these solutions.

Of the three basic solutions given, onIy Reissner%
solution is of stich a nature that the underlying assump-
tions can be physically realized without difficulty (con-
stant cross section, concentmted load at tip). At the
time of publication, it was stated that the solution is
upplicable only when the cover consists of co~at~
sheet (reference 8); it was stated later (reference 9)
that the solution applies ahio when the cover consists
of a flat sheet. Reissner’s solution is therefore shown
in figure 41; it will be seen that, at some distance from
the root, it is a fair approximation, but at the root the
experimenhil sheu-lag effect is nearIy twice 8s large
as that predicted by Reissner’s solution.

The series solujion given by Wiiy (reference 10)
is based on the same principles as the solutiow listed
and is therefore open to the same objection m that it
cannot give more than a very rough approtiation.
In view of this fact, the labor of using a solution by
series is hardly justifiable.
‘ The soliution given by Goodey (reference 11) is
identical with the solution of the single-stringer beam
given in reference 1. Goodey ako gives one’case not
included in reference 1, nameIy, the case of uniformIy
distributed loading.

A very complete and elab&ate method of shear-l&
anal@s has been, presented by Ebner and K611er
(reference 12). The idealiied structure consists of
stringers, sheet, and transverse ribs. The transverse
ribs are ‘finite in number and of tite stii7ness; the
method is therefore more complete than the methods

TF’+-
25 25

=7 -A=4 ..~:<_<.F___ -+.,
T

t- O.mo t

3.f -—-—-—-—- 1
t
t
1

Fmee$E61.—Beamnsedbg Ebner-IQJUerlhrnumdml exsmrJe(hmn rekeme. 12).
G/H&M. Dimenskmsare.in cau~ nMs.

pre9ented in this paper. Comparative calculations
made in reference 12, however, show that the rib
stifhss has only a and influence on the s~ger
stresses so that th~ simplifying assumption of infinite
number and stiiln~ of the ribs remdts ody id very
small errors. This conchsion drawn by Ebner and
Ktlller from their theory is amply codrmed by the
good agreement between the erperimenta and the
analyses pr~ented in this paper.

- The method of reference 12 is rather diflicult tQ
follow; comparisons have therefore been ocdned to
the analysis of numerical exampks given therein by
the methods presented in this paper. The dimensions
of the structure anaIymd in reference 12 are given in
&ure 51.
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FIGUBE62.-Ebner-Ktilkr beam, lcmcfmso I, anzlymf by dlllxent metbculs

Figure 52 shows the results for load case 1, which is
the case of an axially loaded panel. It will be noted
that in reference 12 there is given an “exact” method
m well as an approximate. one, the approximate method
being recommended for practice because the exact
method is quite cumbersome. The solution made by
the substitute singbstringer method agrees with the
exact method of reference 12 at all of the stations
except one within the accuracy of reading the values
from a small graph, The maximum difference between
the exact method and the present single-stringer method
is only slightly larger than the difference between the
two methods of reference 12 and is unimportant for
design purposes.

Iia I 1 I I t I I
Mefhod.of colcukw%on ,“

- Ebe@Wkr (Fe7b=nce 12)
Ioq ~ o S&s fdufe sikqk sfrin

I r“ ‘x Successive &or-foul rtif~\ . . . #

80 \ f
,A,E

‘k \t I

x&

FIouam&–Ebow-KtUler beam, W exe 2, analyzed by different methwls. V*
klbxmms on each shear web.

Figure 53,shows the results for the beam. The agree-
ment between the solution of reference 12 ttnd the single-
stringer solution of thispaper is very close except at the
root, where there is a difference of 3 percent on the
flange stress and a ditlerence of 20 percent on the strms
in the center stringer. The agreement between the=
Wlution of reference 12 and the solution by successive
shear-fault reduction is good. .

It should be pointed out thnt this numerical example
repreacnts the most severe test that can possibly be made
of the powers of the substitute einglwtringer method.
The chordwise distribution method, which is an integral
part of this method, is based on the assumption that
there are infinitely many stringers; the half structure
analyzed here has only two stringers, which is not a very
close approximation to infinitely many stringers.

The example may serve as a warning,&erefore,that
in such extreme cases, the method of shear-fault reduc-
tion should be used to fine the approximation obt~ined
by the Singl-stringer method. From practical con-
siderations, the discrepancy found here between the
method of reference 12 and the substitute single-
stringer method is of little interest because structures
with only two stringers are not likely to be encountwwd
in rmictice.
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TABLE 1

BASIC DATA FOR ANALYSIS OF BEAM
[~/E-0AIXh6.IS h.: b-10.S76 h.: t-O.OM ‘n.: P=600IbI —.

“1 II3f=~
Sfatlon ,=

(in.) (dA12.) (dAl%.) MAL) (I&d & OWJII
l—1~ 1 I 1 I I .

.

.

“TABLE 2 . ---._ —.—.
COMPUTATION OF COEFFICIENTS FOR RECURRENCE FORMULA (FIRST APPROXIMATION)

[EY=o.ocws (+++);-:]

w“ ‘-’
.-...;: , -—

Ii
Bay (.&%.)

1 ag

: .298

: :E
6 . m

“1’1$,++== K I K~ [IitmhlmsinhKL1
A—r

1
A—L(.?iiAri.)

0.62J
X63
.6a6

:$3
.ms

4.13
3.72
8-3s
alo
2s6
2.63

1.so
L72
L67
1.43
1.24
L25

-.

. .

TABLE 5

STRESSES IX SUBSTITUTE SINGLE&TRINGER BEAM
(sEco~D kpPRoxIllATION)

STRESSES IN S~BSTITUTE SINGLE-STRINGER BEAM
(FIRST APPROXIMATIO.N)

[.-,*G+)-O*..*J5J*,*]-]
r(+) ‘0-wfmm&*5’* *-*ml

1Yh

L

(&Jcl
..,.-:. . .

I I

-IIsta-
ffm +$1 &

——
.,

-.
..-

-——l—
1144
2140

4064
5&5

)36,

%

%
127$

1

72
157
a?
w
747

1195

—

Total..._=.
Average.-...

l..ToteJ...._..–_&62
AwTsFK. . . . . . 1.44Ll-

COEFFICIENTS FOR RECURRENCE FORMULA
(SECO.ND APPROXIMATION)

co3m,mATIoN OF i2H0R”DWSE DIS77R1BtiIO~ OF
. . -.

1 , ,

STRESSES AT STATICN 5

QK36 a 661 am 0:‘# a yzJ
.om .s29

0.1163
.637

.0750 .m
.1172

.s7
. 071s

.S2i .lm
.574

.1170
dg .606

.(FS9 .332
. Km .Us4

.s33 .1374
.0664 .632 .4s7 .357

.I1wl
.1336 .I192

,.-,.. ,

[

G4L.=’~)@.i71 .-

-1

C’armtfon factor+l. In
- 140
=lb

-..———
1Uncml-eotedVdlms.
: cme14ed values.
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TABLE 7

DISTRIBUTION OIZ STRESSFA IN BEAI

‘htim (lb/;;ln.) (lb/&.) (k&fir!;

TABLE 8

EFFECT OF REMOVING SKIN PANELS

station
I

s 4>5
z 2 4 0 : ..; , 1-Si

Efleet of removing panel AB

m 1.247 a416 o 0 (kMo 1.@l
e-z. .’M .047 l.m 1!OXI .424 . lW

6s.5 16&7 24Zo 2420 NM.6
::yAL In.) .422

4&o
.M2 .877 .224 .2Q6

lb5 400
.270

642 7%5 346 167
$&(~ [n.) .818 .297 .2ss

219
.256 .225 ..$!’la

627 S47 S45 493 214

Ef(@ct of removing pand 6C

KY 1.a2a 0.&2 o 0 am 1. 7sn
Cxm .M9 . f4a
;/l:)

.414
26.9 J%’ k. $’ 40.4

.170
627 I&e

81 !al 241 2s1 172 n
PfAc 81 ’211 241 281 In 77

Stringer stressesufterremovlna p=% AB and EC

Ugtp
am

●.&p . am
sc~li{w

NUB
-Iym

MM

m mm 2273 174s IIW3

Ws4 !i814 w !Kua Km

Is@
~.. 2241 1672 9n

1s70 1470 lm 14Kl Sm
,,

TABLE 9

EFFECT OF CUTTING STRINGER

FINAL STRINGER STRESSES
t 1

StatIon

I I l.. I

4J4
z 1! : 0 : I : U!

Efleet of &Ung strlngcr B

y gg a g 0. lZM
o

:217 .al L m
81 m

676 W
in 15!22 !@J4
21s 1107
so % 407

0.1247
0
1.MI

676
1127

1240
460

U#k

LUB (1 sq
In.).

Ucin(l)ww

~DJi)/9q

Final stringer strmws

1

am 5476 W-1 ?402 214!4 1251

27% 1402 0 0 9.s9 WI

2167 X31 amo 3471 ala2 lum

1733 2106 an awl 1s% m

.
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TABLE 10

SINGLE-STRLWGER BEAM BY SUCCESSIVE SHEAR-FAULT REDLWTION—FIRST

207

CYCLE -

7

-FD
s ‘a 10 11 lz

——

r
A&z ~L SF SEC. SFCi

qy (lb) (lb) (lb) (lb) (Ib)

.

~ ‘~

36e3 440 &&—

t-

-M [—’

–6 –a

24044m 4301-=
I –19 qd——-——
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111-=+~

—T\ 42s1=22i6————
–62 +3s

1.W 176 424 –248

-s3 +62

6SU 64 416 –662

t“

+s

2=-8~

.— -

=-l-16 17

a

15

A8L
.

Fr ~L

(Ib) (lb)
Bay ahy

—t-

+1-1

E
2

s

4

———
6

6

*

0 0

-7 133s

+-
1

-91-35 +16 –l--132s iw

4=——
689s6s

I
=q=ic.—

I
+2s =t=

le5011WMt 634 +20

+24 403412366

---E--z 2Mo- +341-647%3 +-L-27 S02VIOG39

-1 –

–l-2102 2356 ‘l- +224 –107 –l-65s4 Z9m

TABLE 11 —

ANALYSIS OF SINGLE-STRINGER BEAM BY SUCCESSIVE SHEAR-FAULT REDUCTION-SECOND CYCLE

[* O:J’ o.4m.z=o.i16x8.0.120mh.]

1 2 3 4 5 6 7 .s 9 10 11 12 W 14 M 16
——

B~ ?&- (lb/xIn.) i% (I& h.) atiz”~) (lb#&bL) (lb/& h.) ‘&F
AFL S&y my SFC
(lb) & (W (W%L4 (l&k) abl:kl.) OM%)

-—

0 0 0 0 0

1 Wa 42s 444 –15
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1

2 23a9 m M41 Ma 443 –22 +9 –la -46 +21 2S43 1462
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I
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5 1497 180 WI –289

I 5- 4710 m, 2W, N06 m

# /
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8 607 n m –Zaz

6 ‘ 63Qi— 2Ko 2993 Mm I!2M +77 +77 +W7 –w 5781 ?am

[-
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MULTISTRINGER

TABLE 12

BEAM BY SIICCEXSIVE SHEAR,-FAIJLT REDUCTION-TYPICAL CYCLE FOR ADJUSTMENT
STRINGER B

OF

m ! 15M . 1774
I

ao6

I I “ I - td=t5t2Etd=E&&&
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1
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6
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